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Figure 1: Experimentally determined highly-rated layered surface texturing solutions.

Abstract

In this paper, we take a new look at the problem of texturing
surfaces so that they can be displayed layered over each other but
remain clearly visible.  Finding optimal textures that solve this
problem is complex because of the perceptual interactions
between the visual effects of parameters controlling texture
generation. Instead of using controlled experiments to investigate
this problem, we use a genetic algorithm based human-in-the-loop
parameter space search to build a large database of human-rated
textures. This database is then analyzed with a variety of data-
mining techniques, including clustering, principle component
analysis, neural networks, and histogram analysis. We detail this
analysis, concluding with a set of guidelines for building strong
layered surface textures, and a display of a number of example
textures.

 CR Categories: I.3.3 [Computer Graphics]:  Picture/Image
Generation; I.6.6 [Simulation and Modeling]:  Simulation Output
Analysis

 Keywords:  perception, visualization evaluation, layered
surfaces, genetic algorithm, data mining, principal component
analysis, neural networks

1  Introduction

The problem of visualizing layered surfaces is important in many
application areas, including medical imaging, geological imaging,
oceanography, and meteorology. However, the problem is
difficult because of visual confounding between the images of the
two surfaces. In real-life, examples of layered surfaces include
objects behind foliage or smoke, or objects submerged in water.
In such situations, we use a combination of stereoscopy, motion
parallax, vergence and focusing of the eye to augment shading
and shape cues to disambiguate the scene. On a computer display,
however, many of these cues are not available.

Following Interrante et al. [1997], who reported that giving
overlapping surfaces partially transparent textures can help to
define and distinguish them, we are interested in exploring the
problem of how to produce simple draped textures for two
surfaces so that they remain clearly visible. Optimal textures, like
those from our experiments shown in Figure 1, should reveal the
shape of each surface without visually interfering with textures on
other layers. Since textures can be arbitrarily complex, it can take
ten to twenty parameters to define a texture with a reasonably
complex set of texture elements and color components. Thus,
using traditional psychophysical methods to find optimal
parameter settings is impractical, since controlled experiments
typically allow varying only one or two parameters at a time.
Further, such experiments have limited applicability when the
visual effects of varying parameters are highly interrelated and
nonlinear.

2 Experimental Process

In other papers we outline our experimental methodology using a
human-in-the-loop genetic algorithm to search the texture
parameter space [House and Ware 2002, House et al. 2005], while
collecting a database of rated textures. In our layered-surface
experiment we used five subjects, each going through three runs
of the algorithm, producing a database of 9720 textures,
subjectively rated on a scale from 0 (unusable) to 9 (excellent
visibility of both surfaces). Figure 2 shows the distributions of
how textures were rated in the first generation (600 initial textures
were generated randomly), and the ratings distribution of the
complete dataset. Clearly the algorithm is successful in producing
a high percentage of highly rated textures.
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For the experimental trials, a display of two textured overlapping
surfaces was presented in stereo, using a frame sequential CRT
display and shutter glasses, and visually rocked about the screen
central vertical axis to provide motion parallax. Both stereo and
motion cues have been shown to significantly improve three-
dimensional comprehension [Ware and Frank, 1996]. There was
no attempt to represent focus cues, however texture parameters
providing low-pass filtering on each layer could be used to create
the illusion that one or both of the surfaces were out of focus.
Both the stereo and rocking motion provided very strong depth
cues. Some of the highly rated textures from our experiments,
especially ones with the top surface entirely semi-opaque, do not
work at all as still frames, but are very clear with stereo and
motion.

Figure 2: Ratings distribution for all experimental trials.

3 Parameterization

The texture generation algorithm that we used had a total of 61
parameters, or 122 parameters for a pair of textures for the two
surfaces. Each texture was made up of four layers; a background
and three layers of features composited over the background. Two
of the feature layers were lines, and the third layer consisted of
dots. Lines provided the ability to create crosshatching and linear
structure, while dots provided the ability to create a high
frequency, mottled look. We believe this to be a reasonably
complete parameterization of the texture space.  It can create all
the textures used by Watanabe and Cavanagh [Watanabe and
Cavanagh, 1996] and more. We do not, however, consider
textures dependent on the surface such as those used by Interrante
et al. [1997].

The textures were mapped onto the two surfaces shown in Figure
3, which were sized so that each surface was covered by 64  (8x8)
texture tiles and arranged so that they were non-interpenetrating.

Figure 3: Bottom and top surfaces

Textures were parameterized as follows. Each surface had a
background HSV color, opacity (though the bottom surface was
always opaque), overall rotation (which rotates all the feature
layers together to angles between -45º and 45º), and a controllable
low-pass filter width. Each feature layer consisted of features
drawn on a grid, with an HSV color and opacity, and a variety of
shape and drawing parameters. Some of the parameters used to
vary the feature layers are shown in Figure 4.

Shown in Figure 4a is a standard set of lines on a 4x4 grid. Line
length and width parameters shown in 4b, can be varied to change
the line size and aspect ratio. Also, the number of rows and
columns in the grid can vary to create large-scale ordering of the
features, like the 20x4 grid shown in Figure 4c. Note that vertical
lines are perceived, even though the actual feature lines are
horizontal. The features are also given a rotational offset between
-90° and 90° (45° shown), and horizontal and vertical offsets (not
pictured).  Features are randomized in several ways: rotational
jitter is shown in Figure 4e, translational jitter in 4f, (horizontal
and vertical jitter are separate parameters). Figure 4g
demonstrates the drawing probability parameter (set at 0.5), which
is the probability that a feature is drawn at each grid cell. Finally,
Figure 4h demonstrates blurring, which is controlled by a
parameter that adjusts Gaussian low-pass filter width. Dots and
lines use the same parameters, except that dots use the width
parameter as a diameter, and ignore length and rotational
parameters. All features are drawn with the length and width
parameters interpreted as fractions of grid cell diagonal length. As
a result, the actual feature size depends both on the grid spacing
and the length and width parameters.  Finally, binary parameters
were used to turn on and off the use of filtering, drawing
probability, and rotational and translational jitter.  These
parameters were determined to have little benefit and will not be
used in future experiments.

Figure 4: Parametric variations of feature layers.

4 Data Mining

Several techniques for data mining were used to explore the
database of 9720 rated textures to extract information on what
makes strong texture pairs for texturing layered surfaces. These
included clustering, principal component analysis, neural



networks, and histogram analysis.  Results for clustering were
presented previously [House and Ware 2002].

4.1 Principle Component Analysis

We used Principle Component Analysis (PCA) to find the
principle directions of variance in the set of textures rated highly
(either 8 or 9). Eigenvalues from the analysis measure the
variance in the direction of each principal direction or
eigenvector.  For purposes of visualization, eigenvectors that
account for a large portion of the variance within the clusters
might be considered as 'free variables' that can be varied across
the range of a cluster without degrading the quality of the
textures. Figure 5 shows a cluster mean and two textures created
by adding and subtracting the scaled principle eigenvector. The
eigenvector changed the top rotation, as well as the hue, size,
randomness and opacity of one of the top features. The texture on
the bottom remains small and grainy, while the main features on
the top – the lines, do not change at all. The cluster was rated an
8, and contained nine texture sets. Since cluster sizes were
generally not large enough to run PCA for 122 variables,
eigenvectors were found from the combination of several nearby
clusters. It should be noted that if the scaling of the eigenvector
puts the new texture set outside of the domain of the original
cluster, this analysis is no longer necessarily valid.  Even so, in
many cases the eigenvector can be scaled far beyond these
boundaries and the textures still have high quality.

Figure 5: Cluster center and textures along primary eigenvector.

With our 122-dimensional data, the principle components have
relatively large parameter components in many dimensions,
making them difficult to interpret. Also, depending on the
individual cluster, it requires around 85 of the 122 eigenvectors to
account for 90% of the variance. This fits with our intuition that
the space is highly non-linear, and the parameters interact in
complex ways to make perceptually good textures.

By analysis of the eigenvectors, the features were ordered
according to which ones tended to have more variation in all of
the good clusters. The eigenvectors with the ten highest
eigenvalues were selected. Then, features were ordered by the
sum over the eigenvectors of the five highest magnitudes of the
features in the selected eigenvectors. This approach was chosen as
being reasonable through inspection of the data. Features with the
highest sums might therefore be useful as free parameters when
constructing good textures. This method does not provide specific
rules for making good textures, since variation across the
parameter space is ignored. However, it does give an indication of
which parameters are more important, and suggests areas that
should be looked at more closely.

Several trends were clear. Comparable parameters always varied
more on the top surface than the bottom surface. Also, with the
exception of opacity, comparable parameters for the surface
background varied more than those for the features.  This implies
that the bottom surface characteristics are more important than the

top, and the element characteristics are more important than the
background for creating good textures.

The color variables hue, saturation and value, were parameters of
interest. In all cases, the hue and saturation variables had more
variation than value. Certain settings of the value parameter are
likely to be much better than others for creating good textures. On
the other hand, saturation and hue might be free variables that can
be used to encode other information, or simply to change the
visualization to aesthetic taste. Interestingly, the parameters that
encode the shape of the elements, such as the number of rows and
columns in the grid, size and shape of the elements, and
randomness of the features, always varied less than the color
parameters. Thus we can conclude that the features must have
good placement, size and shape before parameters like color,
rotation and filtering can have much of an effect on visualization
quality. Finally, the opacity of the top surface background and
features varied more than expected. This is probably because the
actual coverage of the top surface is a complex function of the
four opacities, the size, randomness, separation and probability of
being drawn of each of the features. Finally, binary variables,
such as those used to switch randomization on and off, also
displayed very high variance, but this was considered to be a false
positive since a binary distribution is biased toward higher
variability than a continuous variable.

4.2 Neural Networks

In order to learn more about the structure of the dataset, we
constructed and trained a neural network to the data [Haykin
1999, Craven and Shavlik, 1997]. We built a 2-layer, fully
connected back-propagation network with 122 inputs
corresponding to the features space, 20 hidden, and 10 outputs
corresponding to the 0-9 texture ratings.  Sigmoid transfer
functions between both sets of layers output 1 if the weighted
input is above some threshold and -1 otherwise.  So each texture
is input as a vector of features, and the output is one of the classes
(0-9). The 20 hidden units are a large data reduction, but the
network learned to categorize with reasonable accuracy. Figure 6
shows the histogram of ratings given by the network for textures
rated as a 9 by humans, showing that most are rated between 7
and 9. Histograms for the other rating groups had a similar spread.
It should be noted that the human ratings are subjective and
almost certainly varied from subject to subject. Although a
network could learn an exact mapping of textures to weights, it
would probably not generalize well to another dataset. Given a
network that does a good job classifying the textures,
understanding the meaning of the weights is difficult. The non-
linearity of the sigmoid function prevents a simple analysis of
weight vectors, however simply looking at which features had
large magnitude weights proved interesting. Fortunately, many of
the weights leading to the output layer were very small. If the
weights leading to a specific output node are positive, large values
of those parameters will increase the chance of the class being
selected. Likewise, large values with negative weights decrease
the chance of the class.



Figure 6: Network classification of all textures rated 9.

Analyzing the weights for textures rated as 9 lead us to the
following indications. The top background should have a small
alpha, little blurring, and a high rotation. The top lines should
have a grid with few rows, and the lines should have small length
and thickness, small horizontal and rotational jitter, but large
vertical jitter. The second set of lines should not be drawn, and the
top dots should have a low probability of being drawn, a small
size, and on a grid with few columns. The bottom surface should
have a high value background color, with high value, highly
saturated lines with few columns, and high value, low saturated
dots with a small radius, and a lot of vertical variance.  Figure 7
shows a texture we created based on these feature characteristics,
where parameters unspecified by the analysis were generally set
to the central parameter value. It actually works well as a single
image, but is especially effective when rocked so that motion cues
are available.

The results for textures rated as 8 had similar weights to those
weighted 9, except they showed a tendency for the bottom surface
to have a blue-violet hue, and the top dots a red hue.
Interestingly, the hypothesis tests discussed later actually show a
slight trend in the opposite direction.  Again, the shape parameters
show much stronger patterns than the color parameters.  The
anisotropic grid structure on top forms banding across the whole
texture, and the high rotation on the top maximizes the
comparative rotation between the perceived lines on top and
bottom.  Interestingly, the high vertical jitter on the top lines does
not greatly increase the perceived randomness.

Figure 7: Texture created according to neural network weights.

We also looked at the weights that produce bad textures – those
rated as 0. The results made sense. The top background is
saturated and opaque, both the top lines and dots are small and
transparent, and the bottom surface has saturated lines. This
serves as a nice sanity check; bad textures are ones where you
cannot see the bottom layer, and with almost no texturing visible
on the top.

4.3 Histogram Analysis

Given the results from the clustering, PCA and neural networks,
as well as a certain amount of intuition, various hypotheses were
made and tested on the data through histogram comparison. We
used Matlab [The Mathworks, Inc. 2003] for this portion of the
analysis.  The good data used for these tests are all textures rated
either 8 or 9, and contained 3078 textures. For most hypotheses,
the test was on some nonlinear combination of discrete and
continuous variables. This nonlinear combination introduces
structure in the distribution of the combined data. Thus, in order
to understand what histogram analysis is telling us about the
deviation of our data from purely random data, it is necessary, in
most cases, to compare each histogram computed from our
database with the corresponding histogram obtained from a data
set whose parameters were generated from a uniform distribution.

4.3.1 Rotation

We first look at overall rotational orientation of the textures on the
two surfaces. Figure 8 shows the distribution of rotations for the
top and bottom surfaces. Note that in this case, since rotation of a
surface is defined by only one parameter, the random distribution
would be flat and so is not shown.

Since the features are all arranged on grid structures, which tend
to create both horizontal and vertical banding, it makes sense that
some relative rotation might help to visually separate the two
surfaces.  We see a strong tendency for the top surface to have
about a 25° rotation, while the bottom surface tends to be at -45°,
5-15°, or 45°.  This suggests that about a 10-20° difference in
rotation across the surfaces might be optimal.

Figure 8: Rotation of top and bottom surfaces



4.3.2 Filtering

Gaussian low-pass filtering was included both as a possible
aesthetic aid, and to simulate depth-of-field cues. Figure 9 shows
the filtering distributions for the top and bottom surfaces. Note
that filtering was turned on and off with a binary parameter, so the
random distribution is biased to have half of the textures with no
filter (width of 1) and an even distribution for the other possible
filter kernel widths. The bottom surface rarely uses the filter, but
has a high kernel width when it is used.  The top surface uses the
filter more often, but uses a smaller kernel width when it does.

Figure 9: Filtering width on top and bottom surfaces

4.3.3 Top Coverage

Figure 10 compares top coverage in the good dataset with top
coverage in a completely random dataset. Because of the complex
interaction between the top background layer and the three layers
of textures, a measure of top coverage was estimated as follows:

Here, C is the total coverage, αback is the background opacity, Ai is
the area covered by a feature layer, αi is the feature opacity and pi

is the probability of being drawn for a feature layer. This estimate
assumes that the features are drawn randomly. Note that for cases
like the middle texture in Figure 1, this measure of coverage is not
accurate. The black lines have twice the frequency as the blue
lines, so the blue lines exactly cover half of the black lines. The
actual coverage does not change much, but the coverage by our
calculated measure goes up significantly. For this reason, the
average coverage is likely overestimated for high coverages and
underestimated for small coverages, and the textures with an
estimated top coverage of 1 or 0 can be ignored. With this in
mind, the peak around 30-50% would probably move toward
50%, and be more pronounced. Interestingly, the top coverage
mean for the good textures is almost exactly at 50%. Therefore we
estimate that an optimal top coverage is somewhere in a range
between 40-50%. Only five bins were used because opacity was
discrete with five bins.

Figure 10:  Estimate of total coverage on the top surface.

4.3.4 Color

Colors of the surface backgrounds and features were constructed
with hue, saturation and value parameters. Common sense dictates
that differences in these parameters between the top and bottom
surface might improve the textures. Differences between surfaces
were found by comparing the most prominent features, i.e. the
features that covered the most area with the highest alpha and
probability of being drawn. Value difference across the two
surfaces is shown in Figure 11.  Peaks at -0.7, -0.4, 0.4 and 0.6
show an interesting bimodal distribution that should be
investigated further. However, only the peaks at -0.4, 0.4 and the
dips at -0.6, 0.5 are significant according to the plotted confidence
intervals. Also, the negative mean and the higher peak at -0.4
show a trend toward the bottom surface being 40% lighter.

  Figure 11:  Difference in value between the top and bottom
surfaces.

The perceptual difference in saturation is slightly harder to
calculate, since value affects the amount of perceived saturation.
In the extreme case of black, there is no difference between fully
saturated and unsaturated color. Therefore we measured the
difference in saturation between surfaces as

BottomTopBottomTopdifference VVSSS )( −= ,
where S denotes saturation and V denotes value. The nonlinearity
of this equation is what produces the spike at zero seen in Fig. 12.



The most obvious pattern is a preference for textures where the
bottom is about 70% more saturated than the top. There is also a
smaller trend for the two surfaces to have the same saturation.

  Figure 12:  Difference in saturation between top and bottom
surfaces.

Finally, difference in hue is only valid when both surfaces have
high saturations and values.  Therefore, we used

BottomTopBottomTopBottomTopdifference SSVVHHH )( −= ,

where H denotes hue, S denotes saturation and V denotes value.
This multiplication of four variables causes the large spike at zero
seen in Fig. 13. Interestingly, almost no significant difference
from random is visible. This suggests that hue might be a free
variable to be used aesthetically or to encode information, though
the trend is a slight preference for the top being more violet and
the bottom redder.

  Figure 13:  Difference in hue across surfaces.

Next, we look at the randomness of each surface, as
parameterized by horizontal, vertical and rotational jitter.  We
analyze the translational parameters separately from the rotational
because there was no way we knew of to find a correspondence
between perceived randomness with translation or rotation.
Translational jitter was measured by,

22
verticalhorizontaltrans JJJ +=

Like the color comparisons, randomness comparisons were made
between the most prominent features on each surface.
Translational jitter, shown in Figure 14, shows that larger
differences in randomness are preferred, with a bias toward the
bottom being more random than the top.  The rotational jitter
comparison shown in Figure 15 also shows a preference for larger
differences, and this time a bias toward the top being more
random than the bottom.  However, the bias magnitude is only
about 1/15th the size of the translational randomness bias.

Figure 14:  Translational jitter differences across surfaces.

  Figure 15:  Rotational jitter differences across surfaces

We also looked at the size and shape of the features, as well as the
grid structure on the top and bottom surfaces. First we discuss the
area of the features and the area of the grid cells, since the two
both contribute to the total size of the features.  Figure 16 shows
the product of the number of rows and number of columns for
grids on both top and bottom surfaces, with the random
distribution for comparison. The top surface has grids biased
towards having fewer rows and columns, which will make the
features on top larger (since the features are scaled by the
diagonal of a grid cell).  The feature area graph shown in Figure
17 also shows a preference for good textures having larger
features on the top than the bottom.  Interestingly, both the size
and randomness bias is reflected in the layered texture examples
chosen by Black and Rosenholtz [1995] of fence posts in front of
grass, and blinds in front of a tiled floor.



Unequal numbers of rows and columns proved very important in
the experiment, as anisotropic grids turned out to be a handy way
to get large-scale order. The lines of dots seen on the top surfaces
in Fig. 5 are a result of a top grid layer with about four times as
many rows as columns. The type of information gained from long
strokes on a curved surface can be present either in the grid
horizontal to vertical ratio, or simply in the ratio of length to
width of the strokes. Figures 18 and 19 show our results.

The most striking pattern is that in both cases, one surface tends to
prefer a certain ratio when the other avoids it. It is likely that as
the genetic algorithm evolved, the two surfaces starting with
random distributions coevolved to tend toward different ratios.
The feature size ratio shows a preference for the bottom having
longer, skinnier features. The grid size ratio shows a preference
for the top having more pronounced lines of features.  This could
either be the result of the top surface having lower frequency
structure and thus showing up better with large-scale patterns and
order, or simply because of a slight initial random bias in the
distributions that was accentuated by the observed modes.

  Figure 16:  Grid density (rows x columns).

 Figure 17:  Feature area (length x width).

  Figure 18:  Feature aspect ratio

Lastly, we comment that the number of features drawn on the top
and bottom surfaces with high probability and high opacity was
generally either one or two.  It was rarely necessary to use three
feature layers to make a highly-rated texture.

  Figure 19:  Grid aspect ratio

5 Summary of Results

We attempt here to combine the results from the various data
analysis methods into general guidelines for making layered
surface textures. We then build textures based on these guidelines,
demonstrating their effectiveness, as well as breaking some of the
guidelines to see the effect.

For smoothly varying surfaces, like the ones used in our
experiments, we can make the following recommendations for
constructing effective textures:

•  Textures across the two surfaces should have a relative
rotation of at least 200 with respect to each other.

•  Coverage (net opacity) on the top surface should be
between 30 and 50%.

•  Features on the top surface should be larger in scale than
on the bottom surface.



•  The top surface should appear more structured and the
bottom surface more random.

• Aspect ratios of texture features should be different across
the surfaces.

• Color values on the bottom surface should be 40% of full
scale brighter than on the top surface. Alternatively, the top
surfaces could be 40% of full scale brighter than the bottom.
Saturation should also be higher on the bottom.

• Color hues can be chosen freely.

We can also observe that the use of low-pass filtering is not
indicated, and that constructing textures from a single set of lines
and a single set of dots is sufficient for producing strong results.

Figure 20 (shown on the color plate page only) is a set of crossed
eye stereo pairs demonstrating the effects of following and not
following these rules. These give some idea of the actual
presentation, although their low resolution and the absence of
motion cues make them considerably weaker than they appear on
screen. Nevertheless, they do indicate the trends we have found.
Figure 20a is a default texture hand-created according to our
results. Each surface has two feature layers with appropriate
saturations, values, randomness, and filtering. The grid sizes and
feature areas were picked from the most common range in the
distributions, and the grid and feature aspect ratios were picked
from the peaks for each surface in Figures 18 and 19. On the
bottom, both feature layers were drawn with probability 100%,
and on the top the first layer is drawn at 100% and the second at
40%. Figure 20b shows a version where the second feature layer
on the top is drawn at 100% and the first not at all. While not
quite as striking as 20a, it still does a good job of showing both
surfaces. Note that when we left the first layer being drawn at
40% the larger features were quite distracting. Although not one
of our rules, it makes sense that randomized features should be
smaller than regular ones to avoid this distraction. Finally, Figure
20c shows a version with the blue and red hues switched between
the top and bottom. The effect is much more strident, but still
visually very readable, demonstrating our finding that hue is
freely variable.

Next we break various rules. Figure 20d shows the result when
the top surface has a very fine grid similar to the bottom surface.
Even though the same top area is covered, the fine texture on the
top blends with the texture on the bottom and it becomes very
difficult to see the shape of the top. Figure 20e increases the top
translational randomness, making the top shape harder to pick out.
Figure 20f flips the top and bottom surface values, which makes
the top surface very easy to read but the bottom surface is now too
dark to easily see its texture or shading cues.

6 Future Work

We have completed a detailed study of the problem of texturing
layered surfaces, using unusual parameter space search and data
mining methods. Our results do not reach the level of theory, but
do constitute a sound set of general guidelines for producing good
textures.

Using the results from this experiment, we have designed a new
experiment to further explore the layered surface texturing
problem and to correct some of the shortfalls of the current
experiment. The experiment will use a simplified set of variables,
and fewer feature layers to simplify analysis. In this experiment,
color will be generated in a perceptually uniform color space, and
parameters will be defined so that concepts of interest have
uniform or as close as possible to uniform distributions, which
will produce histograms that are easier to analyze. The new
experiment will also vary the surfaces themselves with each
presentation, and provide a wide range of spatial frequencies in
the surfaces, removing the bias toward very smooth surfaces
inherent in the current experiment. Finally, it will use a more
objective measure for quality evaluation than we used for the
current work. We expect that the results will allow more subtle
aspects of high-quality textures for this problem to be explored,
and stronger guidelines to be developed.
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