
Image Recoloring Induced by Palette Color
Associations

Gary R. Greenfield

Department of Mathematics & Computer
Science

University of Richmond
Richmond, VA 23173, U.S.A.
ggreenfi@richmond.edu

Donald H. House
Visualization Laboratory
Texas A&M University

College Station, TX 77843, U.S.A
house@viz.tamu.ed

ABSTRACT

In this paper we present a non-interactive method for recoloring a destination image according to the color
scheme found in a source image. The approach is motivated by trying to invert the working process employed in
oil painting, and results are demonstrated by application to several well-known oil paintings. The algorithm uses
several color models, but leans most heavily on the Lαβ color space. We first color segment each image bottom-
up by iteratively merging groups of pixels into connected regions of similar color. During color segmentation, a
color “texture” tree is generated and associated to each region. Next, we construct classes of regions by
compensating for color duplication and color similarity within the set of averaged color values obtained from
regions. We extract a color palette for each image by choosing the colors of canonical region representatives
from these classes. Once this palette is constructed for each image, any inverse map from the set of destination
palette colors to the set of source palette colors induces a forward map from the classes of regions in the source
image to sets of classes of regions in the destination image. For each source class in the range of the inverse map
we transfer color from its canonical region representative to each of the associated destination regions. Color
transfer occurs at the level of pixels, and uses the color texture trees associated to the regions. Our recoloring
method attempts to maintain the destination image’s original value structure. This is accomplished by transferring
only the α and β channels from the source. To make our method computationally tractable, we work within an
image pyramid, transferring color layer by layer.

Keywords
Image recoloring, color segmentation, image pyramid.

1. INTRODUCTION
A painting’s palette is responsible for how color is
selected, contrasted, harmonized and blended, and it
exerts a powerful influence on how the viewer
interprets a painting’s imagery. Consider the two
Impressionist paintings at the top of Fig. 1. For Starry
Night, Van Gogh uses stark color contrast. The cool
saturated blues and greens of the sky and landscape
are opposed to the warm saturated yellows and
oranges of the moon and stars to create a visual
intensity. Compare this with Cezanne’s Skulls, where

the painter smoothly blends warm reds and oranges of
low saturation with just a few cooler brown elements
to create a quiet glow.

Figure 1. Test images and an image recoloring.

(Van Gogh and Cezanne from http://www.artchive.com)

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Now, imagine being able to somehow liquefy the
color of a painting in such a way that it could be
poured from one painting to another thereby
transferring the chromatic “orchestration,” i.e. the
artistic intent, of the color scheme, from one painting
to the other. At the bottom of Fig. 1 we see that,
paradoxically, Starry Night’s vibrant energy might be
imbued into the somber imagery of Skulls.

Our goal in this paper is to investigate the
problem of transferring the color scheme of a source
image to a destination image and in the process learn
more about what it means to “liquefy the color of a
painting” and to “transfer the artistic intent of a color
scheme.” The solution we describe is based on the
notion that one can link an image’s color organization
to its underlying color palette and then, by making
relevant associations between colors in the source
palette and the destination palette, recolor the
destination image while preserving the artistic intent
of the color scheme used in the source image.
Potential applications include: altering the mood of a
movie scene, rapidly prototyping set designs, and
assisting in matching CG and live-action plates.

The idea of transferring the color content from
one image to another is not new [Rei01], but previous
algorithms required manual selection of swatches to
steer the algorithm. Moreover, images were carefully
chosen so that their compositions had about the same
color proportions so that statistical methods could be
used to effect the color transfer. In this paper we
attempt to overcome such limitations. Our goal is to
fully automate the color transfer process and thus to
consider the color transfer problem in its full
generality.

In developing the conceptual framework for our
color transfer method we have tried to take into
consideration two ideas classically trained painters
are taught: 1) Paintings should be organized by value
– the pattern of lights and darks. 2) To develop a
painting on canvas, first block out broad loosely
defined regions of color, which determine the
structure of the image, and then later refine these
regions by creating image detail. These ideas furnish
two cornerstones for our design: 1) The value patterns
of the destination image should survive color transfer
from the source. 2) An image should be
“deconstructed” using an image pyramid whose top
layer or apex reveals only enough detail to determine
a limited number of regions of color, and whose
successively lower layers refine these regions.

For the purposes of illustration, throughout most
of the presentation we use the low-resolution
(maximum dimension of 128 pixels) Starry Night and
Skulls images of Fig. 1 as source and destination
images. At the end of the paper we present
recolorings of other well known paintings.

2. BACKGROUND
The notion of color transfer per se is not widespread
in the literature, although texture transfer has received
considerable attention [Her01]. Reinhard et al.
[Rei01] examine color transfer with the goal of color
correction in mind. Their method is best suited for
working with images (or portions of images) whose
palettes are similar. Their results are quite dramatic
and successful. A key contribution of their paper is
the identification of the Lαβ color space of Ruderman
et al. [Rud01] as an ideal candidate for work in image
recoloring. Their recoloring method is statistical in
nature: they modify destination pixels in such a way
that upon transforming them to their color space they
will have the same statistical characteristics as
similarly transformed source pixels.

We work in four color spaces. Most of the work
is done in Lαβ color space, which has the property
that for a range of color images of nature scenes the
L, α and β axes are highly perceptually decorrelated.
The L component of the space is a reasonable
measure of perceptual luminance while the α and β
components measure chromatic content. We use the
RGB color space for identifying extraneous colors,
and we use the HSV color space to help identify color
similarities within sets of colors from which palettes
are extracted. Finally, out-of-gamut color correction
is done with the help of the Y, or luminance, channel
of the YIQ color space.

3. COLOR SEGMENTATION
Our primary objectives are to organize the color
information within an image in such a way that it can
be analyzed for artistic intent and that it can be
quantitatively transferred from one image to another.
These are mutually distinct and competing objectives.
To discern artistic intent we need to make color
comparisons on the basis of color metrics. To transfer
color we need to capture the structure or “texture” of
the color fields within an image. To handle both
objectives simultaneously, we construct regions of
pixels bottom-up using a region-merging algorithm
that assigns binary trees to regions. Colors obtained
by averaging color over all the pixels within a region
are used when we need to determine artistic intent,
and binary trees are used when we need to transfer
color texture. Bottom-up region merging determines a
color segmentation algorithm. We do not use one of
the standard color segmentation algorithms [Com97,
Den99] because we need to preserve color texture.

Our region-merging algorithm uses the pixel
representation for a raster image first suggested by
Bieri and Kohler [Bie91]. Geometrically, a pixel
consists of a vertex, left and top edges, and a face.
The vertex is determined by the pixel’s row and
column. Associated with each edge is a flag for

determining whether or not the edge is currently
serving as a boundary between two regions of pixels,
and a time stamp for remembering which merge event
caused the edge to become converted from a
boundary edge to an interior edge. Each edge knows
which pixel it belongs to, and pixel color is associated
with each face.

Geometrically, a region consists of a group of
one or more pixels that are simply connected using 4-
neighborhoods. A region is represented by a binary
tree whose leaves are pixels, and has an identifier, an
area, an average color, a height, an active flag, and a
distinguished pixel (used in region merging). Initially,
each pixel is made into an active region of unit area.

Any two active adjacent regions – regions
sharing a common boundary edge – are candidates to
be merged to form a new active region. Any sequence
of region merges will color segment an image into a
forest of binary trees. The two children of each binary
tree are the regions that were merged to form that
region. Pixels know which active region they belong
to.

During a scanline traversal, edges of the pixel
that are boundaries with adjacent pixels are placed
into a priority queue. A merge event occurs when a
boundary edge is removed from the priority queue
and passed to a region-merging algorithm that is
responsible for the bookkeeping to create a new
active region from the two regions bounded by the
edge. Fig. 2 shows a pixel diagram for a merge of
regions N1 and N2 that will be triggered by boundary
edge e. Our algorithm takes into account additional
shared boundary edges such as e’ and updates the
priorities of non-shared boundary edges such as f, g,
and h thus bringing into play regions that are
respectively interior, common, and exterior to the two
regions being merged. The algorithm uses merge-
event time stamping to maintain edge integrity when
it becomes necessary to remove more than one shared
boundary edge during a merge.

N1

N2

f

h

g

e

e'

Figure 2. Merge of regions N1 and N2 triggered by

boundary edge e.

We attempt to preserve the artist’s broad color
structure by merging neighboring regions with the
same perceived chromatic content. The merge priority
of an edge is defined to be the inverse of the sum of

the squares of the color component differences across
the edge, computed in Lαβ space.

4. THE IMAGE PYRAMID
We organize each digital image into a pyramid
[Hee95] by successively down sampling so that the
base, at layer zero, has the image at full resolution,
while the apex has the image at the lowest resolution
we wish to use. Our down sampling method is
nonstandard. From a block of four pixels we select
the pixel that is closest to the average color of the
block in order to maintain true color and help to
prevent the painterly style from being degraded by
color averaging.

Fig. 3 illustrates how we use the image pyramid.
The apex forms one “logical” active region. To
descend through an image pyramid, we select an
active region in the current layer (indicated by
hatching in the figure), and we mask those pixels in
the layer directly beneath (indicated by shading in the
figure) which can be projected back up to pixels in
the region selected. Now, we color segment only the
portion that has just been masked, and we repeat the
process on down to the base.

apex

base

Figure 3. Synthesis within an image pyramid.

If we start in the layer beneath the apex of the
image pyramid, and color segment until we have a
reasonably small number of regions, then we can
usually achieve good approximations to the color
organization for the image. There are broad
expansive areas of the image to work with which are
broken up by areas containing highlights, shadows,
and transitional colors.

One problem that arises is that there can be too
many small regions. Some of these small regions
consist of single never-merged accent pixels, whose
boundary edges are of such low merge priority that
continued merging will preserve these “rogue”
regions at the expense of the structural integrity of the
composition as a whole. The decision about how to
handle rogue regions affects both the formation of
image palettes and the actual color transfer that takes
place at the level of pixels. To help prevent image

corruption, we interrupt the region-merging algorithm
before the major structural elements are lost and work
the rogue regions into the merged framework by
absorption until the desired granularity is obtained.
More precisely, once a merge-priority threshold is
reached, we override the algorithm for selecting
edges that trigger merge events so that rather than
selecting edges of maximum priority, it reverts to a
scanline algorithm to find an edge associated to a
pixel in a region of minimal area.

We faced a tradeoff when deciding how to select
companion regions to use for absorption. Our
experiments showed that absorbing the smallest
extant regions with their largest nearest neighbors
gave the best color distributions, while absorbing
them with their smallest nearest neighbors gave better
image decompositions. Even though our goal is color
transfer, we adopted the smallest-nearest-neighbor
rule so that image recoloring would have fewer image
artifacts.

In order for regions in layers that are lower in the
pyramid to be able to reveal more detail when they
are color segmented we decrease proportionally the
threshold we use to interrupt priority merging.
Because absorption impacts color transfer at the pixel
level, we do not absorb rogue regions in subsequent
layers.

5. PALETTE CONSTRUCTION
Our first step in palette creation is to compensate for
color duplication within the set of segmented colors,
i.e. the set of averaged colors from active regions.
Because regions are 4-connected, there will usually
be a number of non-adjacent regions that will have
perceptually indistinguishable colors. We partition
the set of segmented colors into subsets of colors and
select one color representative from each subset.
These representatives form the set of identified
colors. Working in RGB space, we define two colors
to be perceptually identical provided their Euclidean
distance does not exceed a specified threshold. We
use RGB space for this purpose because Lαβ space is
logarithmic and makes too fine a distinction between
dark colors and too coarse a distinction between light
colors. The color chosen as the canonical
representative for a subset is the one that is associated
to the region having the largest area. Following
segmentation, Starry Night has 159 colors and Skulls
has 119 colors. Following identification, these are
reduced to 22 and 13.

Since we are attempting to model the painter’s
palette, we want a bare minimum number of colors,
thus we must account for the fact that within the set of
identified colors there may be a number of shades of
a given color. We need to partition the set of
identified colors into subsets such that all colors

within a subset are similar up to shading.
Unfortunately, this is a very difficult task, as no single
color space accurately captures the notion of shades
of a color. We again adopted a bottom-up approach.
Sorting the identified colors by their saturation
components in HSV space, we let each (unused) color
serve as the representative for a cluster of colors that
are similar with respect to shading as determined in
some color space. Iterating this clustering algorithm
first in HSV space, where similarity is defined using a
“tapered wedge” neighborhood, then in Lαβ space,
where similarity is defined using a “slab”
neighborhood, allows us to “converge” to a set of
color representatives for clusters of colors within the
identified set of colors. Clustering in HSV space has
advantages for lighter colors, while Lαβ has
advantages for darker colors. The final color palette
consists of the set containing the most saturated color
in each cluster. For our test images, shade clustering
reduces the number of colors for Starry Night from
22 to a palette of 10 and in Skulls from 13 to 8.

For most images it does not make sense to try
and recolor true black or true white, since they are
mixing colors used to make shades from palette
colors. Thus, we do not consider true black and true
white as belonging to our palette, when we are trying
to make decisions about color transfer. This has no
effect on the Skulls palette, but does remove the
darkest color from consideration in the Starry Night
palette.

At the top level of the pyramid, following “shade
extraction” our algorithm establishes an initial set of
“master” palette color associations. Thanks to master
associations, when layers lower in the pyramid are
considered, although we must continue to compensate
for color duplication following segmentation, it is no
longer necessary to extract shades, because at this
point we are trying to refine the master associations.
Instead, we discard some colors from the set of
identified colors of the source image in an effort to
prevent spurious colors that arise during segmenting
from corrupting color transfer from source to
destination. Such spurious colors can result from
averaging near feature boundaries, averaging over
non-segmentable textures, or averaging over
upsampling artifacts. After the issue of color
duplication has been dealt with, we discard colors by
sorting them on the basis of segmented area and then
retaining only enough colors to account for 90% of th
e portion that has just been segmented.

In the layer immediately below the layer that was
segmented to extract the image’s palette, whenever a
projected region is to be segmented, the region is
redefined to include the projected regions from all the
regions in the class of its parent. This ensures that all
the shades from the source color and all the shades

from the destination color get considered
simultaneously.

To summarize, an image palette color is a region
color that is responsible for a set of shades, and a
shade is a region color that is responsible for a subset
of regions with perceptually indistinguishable colors.
Thus, image palette colors partition the set of
segmented colors into classes. The particular region
in each class whose color is identical with the palette
color serves as the canonical representative for the
class to which it belongs.

Fig. 4 shows the palettes and the segmented
images recolored with respect to the palette color of
the class they belong to. These palettes were obtained
by using a four layer pyramid with the apex having
maximum pixel dimensions 16 x 16. Colors from the
palette are sorted in descending order according to
the total area they are responsible for. A histogram of
these areas lies above each palette.

Figure 4. Palettes for the low resolution test

images.

6. PALETTE COLOR ASSOCIATIONS
Although making “intelligent” color associations
between source palette colors and destination palette
colors is not the primary focus of the current paper,
we propose a preliminary approach. We call this
approach naïve, as it is not informed by deep
knowledge of palette structure or artistic intent.
Numerous tests suggested to us that it can be
beneficial to associate the color responsible for the
largest area in the source with that from the
destination. This leads to the color transfer heuristic:
form an anchor pairing between source and
destination based on largest areas and then make
further pairings based on how colors deviate from
these anchor colors. Our implementation sorts the
palette colors from largest to smallest by area. We
then translate all of the colors in a palette so that the
color with the largest summed area is the origin of a
local palette color space. This serves to measure the
remaining colors relative to the color with the largest
summed area. Since translation preserves relative
values of L, value rankings of the colors do not

change. In the spirit of Reinhardt et al. [Rei01], we
turn to elementary statistics to establish a meaningful
way to make comparisons across color sets. Within
each palette, the mean and standard deviation of each
component is calculated, and all components are
replaced by their z-scores, i.e. the number of standard
deviations from the mean. We then translate a second
time so that the anchor color remains at the origin.
Our algorithm for associating source palette colors to
destination palette colors forces the colors
representing the largest summed areas of the two
images to be paired. To encourage the colors
representing the second largest areas to be paired, we
rotate each normalized palette around its L-axis so
that the β components of the normalized colors
corresponding to the second largest summed areas are
zero. Palette color associations and their induced
source to destination region pairings now arise as
follows. Associate to each normalized, rotated color
in the destination palette the color in the source
palette that is closest to under Euclidean distance
measure. For each of these palette color pairings,
form source to destination region pairs by linking the
source palette color’s canonical region with all of the
regions in the class of the destination palette’s color.
Fig. 5 shows the palette color pairing this strategy
produced for our test images following color
segmentation of the 32 x 32 resolution layer. Source
colors are in the top narrow row, and corrected source
colors (see next section) are in the lower narrow row.
Destination color is in the bottom thicker row. Since
the palette color associations in Fig. 5 respect the area
sort that was imposed upon the destination palette, we
are able to observe that some source colors (e.g. gray)
are used only sparingly and some (e.g. gold) not at
all.

Figure 5. Palette color associations for the test

images.

7. PIXEL LEVEL COLOR TRANSFER
The final step of our color transfer method requires us
to use the binary trees from a paired source region
and destination region to transfer color from source
pixels to destination pixels. If the trees were
isomorphic, then we could traverse them in parallel
and achieve a one-to-one pixel matching. However,
the two trees will almost certainly be topologically
different. Instead, we transfer color between paired
regions by simultaneously traversing their binary
trees in such a way as to approximate a parallel
traverse between two identical full trees.

There is insufficient space for the full details, but
our traversal algorithm has the following properties:
1) if presented with identical trees it pairs identical
pixels, 2) if a source pixel is transferred to a
destination region, then this pixel’s color is
distributed throughout the entire region, 3) if a source
region is transferred to a destination pixel, we choose
the color closest to the region’s average color, and 4)
when neither the source region nor destination region
is a leaf, we recursively descend through the subtrees
until a single source or destination pixel is reached.
The images in the top row of Fig. 6 show the
advantage we gain from subtree analysis. The image
at the upper left shows the transfer of the average
Lαβ color from the paired source region, while the
image at the upper right shows the transfer of the Lαβ
color from the paired source pixel for our test
example. The pixel transfer approach clearly
preserves more of the visually rich color texture of
the source region.

Figure 6. Comparison of color transfer by regions
(left column) versus pixels (right column) and by

Lαβ (top row) versus αβ (bottom row).

8. COLOR CORRECTION
Since we want to transfer chroma not value, we
transfer only the α and β channels from source to
destination. Fig. 6 shows how important this is.
Without value preservation (top row), the structure of
the image is lost, whereas with preservation (bottom
row) it is retained. However, two problems arise: 1)
color corruption due to large discrepancies in the L
channels i.e. excessive lightening or darkening of a
color and 2) out-of-gamut colors due to significant
differences in hues. When the L component of a color
is low, its chroma should not matter. Since many
digital images have high saturations in their dark
colors, transferring the chroma from dark colors to
destinations with moderately higher value
components often yields unnaturally saturated colors.
As a partial solution to this problem, when we
transfer the α and β channels from the source image

to the destination image, we attenuate them when the
destination pixel is bright and has a much higher
value than the source pixel.

Even though desaturation is not invoked when
highly saturated colors are transferred to destination
colors of lower value, out-of-gamut colors may still
result because the “strength” of the chroma being
transferred may artificially inflate one or more of the
RGB components when we transform from Lαβ
space. Regardless of how out-of-gamut colors arise,
after we transform all of the destination image pixels
back to RGB space we must often make a global
correction of the RGB image so that all colors are in
gamut. This is accomplished by identifying the 96-th
percentile for the set of R, G, and B components
collected from all image pixels and then scaling the
entire image by this value, if necessary. We found
that scaling by the global maximum darkens the
image too much, so use of this smaller value is a
compromise that seems to work well in practice.
Pixels where one or more R, G, and B components
were above the 96-th percentile are still out-of-gamut,
so we do a local correction as follows: the maximal
channel value is clamped and the values of the
remaining channels are raised in an effort to try to
preserve the pixel’s luminance, by holding the Y
component (of YIQ space) constant.

Desaturating colors as they are transferred from
source pixel to destination pixel and then invoking
global color corrections can produce images with
excessive amounts of gray. This problem is most
acute when (pure) whites are involved. Trying to add
chroma to whites in Lαβ space causes colors to soar
out of gamut in RGB space. Further complicating
matters is the fact that when trying to transfer
saturated colors to dark areas, global correction can
create “hot spots” caused by clamping only a few
pixels within a region. Issues such as these revealed
to us how difficult the general problem of color
transfer really is.

In making images for this paper we added one
more feature to try and head off out-of-gamut
problems. When artists want to incorporate a
disparate color into their palette at a late stage of
image composition, they must often readjust the value
structure of the entire painting. Therefore, prior to
color transfer we tried preconditioning our destination
images by implementing an algorithm to modify L
values of the pixels in the destination image so that
their resulting histogram would match the histogram
of L values in the source image. Fig. 5 showed the
colors in the destination palette on top split in half.
The top half is the color as it appears in the image
and the bottom half is the color as it appears after
conditioning. The fact that a destination image might
need conditioning in order to be “value compatible”

Figure 7. Top: Test Fragonard and Kandinsky.
Lower left: Fragonard value-conditioned from
Kandinsky, right: Kandinsky from Fragonard.

(Fragonard & Kandinsky from http://www.artframed.com)

with a source image demonstrates why it is virtually
impossible for certain recolorings to be done. For
example, Fig. 7 shows what happened when we tried
to condition a Fragonard using a Kandinsky and vice
versa. The Fragonard became useless after this step,
as its value structure was destroyed by the process.
The Kandinsky held up somewhat better.

9. EXAMPLE RECOLORINGS
When producing high resolution image recolorings, to
prevent “blockiness” from propagating during
pyramid descent, we turn off absorption after the
initial layer is color segmented, and as each new layer
within the destination pyramid is encountered, we
examine its pixels one by one in order to resolve any
questionable parent-region assignments for pixels that
are children of boundary pixels in the parent layer. A
high resolution recoloring for our test images is
shown in Fig. 8. A high resolution recoloring of
Kandinsky by Fragonard is shown in Fig. 9.

The top row of Fig. 10 shows additional test
images by Franz Marc (Yellow Cow) and Emil Nolde
(Mask Still Life III) that we used to evaluate the
generality and the limitations of our approach. They
were selected for their range of palette colors. Figs.
11 and 12 show bi-directional recolorings. The
bottom row of Fig. 10 shows the top-level palette
color associations for each of these recolorings.

Figure 8. Recoloring of Skulls by Starry Night.

Figure 9. Recoloring of Kandisky by Fragonard.

10. CONCLUSIONS
The goals of this paper were limited – we attempted
to establish a framework to investigate the problem of
transferring the chromatic content from one image to
another in such a way that its artistic intent was
preserved. The images presented are demonstrations
of the potential of this framework, and provide a
benchmark by which to measure future work. In that
sense, we feel that we have succeeded in our original
quest.

Nevertheless, we were never wholly successful at
making a bi-directional recoloring of Starry Night
with Skulls, primarily because the narrow range of
earth tones in Skulls meant that nearly all the colors in

Nolde Marc

Figure 10. Top row: Nolde and Marc images.

Bottom row: Palette color associations. (Nolde and
Marc from http://www.artframed.com)

Figure 11. Recoloring of Marc by Nolde.

Figure 12. Recoloring of Nolde by Marc.

its palette needed to be transferred before the Starry
Night recoloring made sense. Given the chromatic
range of Starry Night this is not an easy task. In
general, we found that the more colors that needed to
be transferred from the source to the destination, the
more likely it was that errors in artistic intent would
occur.

Thus, the most interesting direction for future
work will be to investigate how to make decisions
about color pairing across palettes. It seems clear that
such an approach must be informed by an
understanding of the artistic intent of each palette,
and must attempt to preserve that intent across the
color transfer.

To summarize, we feel that the key problems that
remain are: 1) deciding which colors within a palette
are the most important ones to use for associations, 2)
establishing “rule sets” for making color associations
between palettes, 3) refining color associations while
descending through an image pyramid (this causes
new colors to come into play, which are not easily
reconciled in accordance with top-level color
associations), and 4) making color transfer decisions
that keep colors in gamut.

11. REFERENCES
[Bie91] H. Bieri and A. Kohler. Computing the area,
the circumference, and the genus of a binary digital
image. Graphics Gems II, J. Arvo (editor), Academic
Press, 107--111, 1991.
[Com97] Comaniciu, D. and P. Meer, Robust analysis
of feature spaces: color image segmentation,
Proceedings of CVPR ’97, 1997, 750-755.
[Den99] Y. Deng, B. Manjunath and H. Shin, Color
image segmentation, Proceedings of CVPR '99, 1999.
 [Hee95] D. Heeger and J. Bergen. Pyramid-based
texture analysis/synthesis. ACM Computer Graphics
(Proc. of SIGGRAPH '95), 229-238, 1995.
[Her01] A. Hertzmann, C. Jacobs, N. Oliver, B.
Curless, and D. Salesin. Image analogies. ACM
Computer Graphics (Proc. of SIGGRAPH '01), 327--
340. 2001.
[Rei01] E. Reinhard, M. Ashikhmin, B. Gooch, and
P. Shirley. Color transfer between images. IEEE
Computer Graphics and Applications, 21(5):34--41,
2001.
[Rud01] D.L. Ruderman, T.W. Cronin, and C.C.
Chiao. Statistics of cone responses to natural
images: implications for visual coding. J. Optical
Soc. of America, 15(8):2036--2045, 2001.

